A combinatorial realization of Schur-Weyl duality via crystal graphs and dual equivalence graphs

نویسنده

  • Sami H. Assaf
چکیده

For any polynomial representation of the special linear group, the nodes of the corresponding crystal may be indexed by semi-standard Young tableaux. Under certain conditions, the standard Young tableaux occur, and do so with weight 0. Standard Young tableaux also parametrize the vertices of dual equivalence graphs. Motivated by the underlying representation theory, in this paper, we explain this connection by giving a combinatorial manifestation of Schur-Weyl duality. In particular, we put a dual equivalence graph structure on the 0-weight space of certain crystal graphs, producing edges combinatorially from the crystal edges. The construction can be expressed in terms of the local characterizations given by Stembridge for crystal graphs and the author for dual equivalence graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Equivalence Graphs and a Combinatorial Proof of Llt and Macdonald Positivity

We make a systematic study of a new combinatorial construction called a dual equivalence graph. We axiomatize these graphs and prove that their generating functions are symmetric and Schur positive. By constructing a graph on ribbon tableaux which we transform into a dual equivalence graph, we give a combinatorial proof of the symmetry and Schur positivity of the ribbon tableaux generating func...

متن کامل

Dual equivalence graphs, ribbon tableaux and Macdonald polynomials

We make a systematic study of a new combinatorial construction called a dual equivalence graph. Motivated by the dual equivalence relation on standard Young tableaux introduced by Haiman, we axiomatize such constructions and prove that the generating functions of these graphs are Schur positive. We construct a graph on k-ribbon tableaux which we conjecture to be a dual equivalence graph, and we...

متن کامل

The Schur Expansion of Macdonald Polynomials

Building on Haglund’s combinatorial formula for the transformed Macdonald polynomials, we provide a purely combinatorial proof of Macdonald positivity using dual equivalence graphs and give a combinatorial formula for the coefficients in the Schur expansion.

متن کامل

Testing Mutual Duality of Planar Graphs

We introduce and study the problem MUTUAL PLANAR DUALITY, which asks for two planar graphs G1 and G2 whether G1 can be embedded such that its dual is isomorphic to G2. Our algorithmic main result is an NP-completeness proof for the general case and a linear-time algorithm for biconnected graphs. To shed light onto the combinatorial structure of the duals of a planar graph, we consider the commo...

متن کامل

Affine dual equivalence and k-Schur functions

The k-Schur functions were first introduced by Lapointe, Lascoux and Morse [18] in the hopes of refining the expansion of Macdonald polynomials into Schur functions. Recently, an alternative definition for k-Schur functions was given by Lam, Lapointe, Morse, and Shimozono [17] as the weighted generating function of starred strong tableaux which correspond with labeled saturated chains in the Br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008